National Repository of Grey Literature 9 records found  Search took 0.01 seconds. 
Resistance mechanisms in therapy of acute myeloid leukemia
Suchá, Simona ; Čečková, Martina (advisor) ; Žák, Pavel (referee) ; Matoušková, Petra (referee)
IN ENGLISH LANGUAGE Candidate: Mgr. Simona Suchá Supervisor: Assoc. Prof. PharmDr. Martina Čečková, PhD. Title of the doctoral thesis: Resistance mechanisms in therapy of acute myeloid leukemia Acute myeloid leukemia (AML) is a hematologic cancer known for its extensive heterogeneity, poor treatment outcomes and high relapse rate. Therapy outcome is often compromised by highly resistant leukemic clones present at diagnosis, which evade chemotherapy and continue to spread the disease. Identification of their cellular features is, therefore, a key in successful targeting and eliminating of these resistant leukemic cells. AML cells can, however, develop drug resistance even overtime due to prolonged drug exposure. Extremely high adaptability of leukemic cells enables them to survive whenever therapeutic stress stimuli occur. Uncovering molecular mechanisms that cells utilize to activate their survival mode is crucial in selection of treatment leading to maximal efficacy. Based on these grounds, two main aims of this thesis were set. First, to determine clinical relevance of ABC efflux transporters in AML and to evaluate the effect of targeted agents on chemotherapy. The focus was put on agents belonging to either FLT3 inhibitors (midostaurin) or CDK4/6 inhibitors (abemaciclib, palbociclib,...
Study on the effect of selected targeted drugs on drug resistance mediated by ABC drug transporters
Paulusová, Viktória ; Hofman, Jakub (advisor) ; Novotná, Eva (referee)
Charles University Faculty of Pharmacy in Hradec Králové Department of Pharmacology & Toxicology Student: Viktória Paulusová Supervisor: doc. RNDr. Jakub Hofman, Ph.D. Title od diploma thesis: Study on the effect of selected targeted drugs on drug resistance mediated by ABC drug transporters. Multidrug resistance (MDR) is one of the major problems associated with cancer treatment. A key determinant of MDR is increased efflux of drugs through membrane ATP- binding cassette (ABC) transporters, which are a family of transporter proteins. Their overexpression contributes to MDR by decreasing intracellular drug concentration due to the efflux of various drugs from cells. Targeting ABC transporters appears to be a promising approach to suppress drug resistance. Therefore, one strategy to reverse the resistance of ABC transporter-expressing tumor cells is the combined use of chemotherapeutic drugs with ABC transporter modulators to enhance therapeutic efficacy. The aim of this work was to investigate the effect of targeted drugs (capmatinib, pralsetinib and tazemetostat) in combination with cytostatics (etoposide and topotecan) on drug resistance mediated by ABC efflux transporters. Results were obtained using MTT assays and caspase activity assays performed on the parental A431 cell line and its...
Resistance mechanisms in therapy of acute myeloid leukemia
Suchá, Simona ; Čečková, Martina (advisor) ; Žák, Pavel (referee) ; Matoušková, Petra (referee)
IN ENGLISH LANGUAGE Candidate: Mgr. Simona Suchá Supervisor: Assoc. Prof. PharmDr. Martina Čečková, PhD. Title of the doctoral thesis: Resistance mechanisms in therapy of acute myeloid leukemia Acute myeloid leukemia (AML) is a hematologic cancer known for its extensive heterogeneity, poor treatment outcomes and high relapse rate. Therapy outcome is often compromised by highly resistant leukemic clones present at diagnosis, which evade chemotherapy and continue to spread the disease. Identification of their cellular features is, therefore, a key in successful targeting and eliminating of these resistant leukemic cells. AML cells can, however, develop drug resistance even overtime due to prolonged drug exposure. Extremely high adaptability of leukemic cells enables them to survive whenever therapeutic stress stimuli occur. Uncovering molecular mechanisms that cells utilize to activate their survival mode is crucial in selection of treatment leading to maximal efficacy. Based on these grounds, two main aims of this thesis were set. First, to determine clinical relevance of ABC efflux transporters in AML and to evaluate the effect of targeted agents on chemotherapy. The focus was put on agents belonging to either FLT3 inhibitors (midostaurin) or CDK4/6 inhibitors (abemaciclib, palbociclib,...
Flow-cytometric analysis of inhibitory effect of novel targeted drugs on the activity of ABC drug efflux transporters
Burianová, Gabriela ; Hofman, Jakub (advisor) ; Červený, Lukáš (referee)
Charles University Faculty of Pharmacy in Hradec Kralove Department of Pharmacology & Toxicology Student: Gabriela Burianova Supervisor: RNDr. Jakub Hofman, Ph.D. Title of diploma thesis: Flow-cytometric analysis of inhibitory effect of novel targeted drugs on the activity of ABC drug efflux transporters Cancer is the second leading cause of death. Cancer treatment often combines conventional chemotherapy, radiation therapy and surgery. More recent approach to treatment is the use of targeted cancer therapy with a greater specificity towards cancer cells. Development of resistance is a major obstacle in the success of chemotherapy. Multidrug resistance (MDR) can be acquired through various mechanisms e.g. overexpression of efflux transporters. ATP binding cassette (ABC) transporters represents a large family of transmembrane proteins that use ATP to pump molecules across the membrane. The three main ABC proteins related to MDR are: P-glycoprotein (ABCB1), multidrug resistance-associated protein 1 (ABCC1) and breast cancer resistance protein (ABCG2). Use of ABC transporter inhibitors increases the amount of chemotherapeutical substrates accumulated within the cells. In this study we evaluated interactions of six synthetic small molecule inhibitors (alisertib, ensartinib, entrectinib, talazoparib,...
The assessment of inhibitory effects of selected targeted anticancer drugs on the activity of ABC drug efflux transporters
Jurčáková, Júlia ; Hofman, Jakub (advisor) ; Šorf, Aleš (referee)
Charles University Faculty of Pharmacy in Hradec Králové Department of Pharmacology & Toxicology Student: Júlia Jurčáková Supervisor: RNDr. Jakub Hofman PhD. Title of diploma thesis: The assessment of inhibitory effects of selected targeted anticancer drugs on the activity of ABC drug eflux trasporters. Lung cancer is the leading cause of death within oncological diseases. Non-small cell lung carcinoma (NSCLC) accounts for about 85% of all lung cancer, and its major subtypes include adenocarcinoma and squamous cell carcinoma. In addition to surgery, radiotherapy and chemotherapy, the use of targeted low-molecular substances, which target tumor cells with higher specificity, has recently been used in treatment. The two main causes of death in cancer patients are the formation of metastases and the development of multidrug resistance (MDR). This may also be caused by overexpression of the efflux transporters. ATP-binding cassette (ABC) transporters are groups of transmembrane pumps that use energy in the form of ATP to transfer a wide range of substrates. In particular, P-glycoprotein (ABCB1), breast cancer-resistance protein (ABCG2) and multidrug resistance-associated protein 1 (ABCC1) are associated with MDR. Inhibition of these transporters increases the amount of cytostatic substrate within the...
The assessment of inhibitory effects of selected targeted anticancer drugs on the activity of ABC drug efflux transporters
Jurčáková, Júlia ; Hofman, Jakub (advisor) ; Šorf, Aleš (referee)
Charles University Faculty of Pharmacy in Hradec Králové Department of Pharmacology & Toxicology Student: Júlia Jurčáková Supervisor: RNDr. Jakub Hofman PhD. Title of diploma thesis: The assessment of inhibitory effects of selected targeted anticancer drugs on the activity of ABC drug eflux trasporters. Lung cancer is the leading cause of death within oncological diseases. Non-small cell lung carcinoma (NSCLC) accounts for about 85% of all lung cancer, and its major subtypes include adenocarcinoma and squamous cell carcinoma. In addition to surgery, radiotherapy and chemotherapy, the use of targeted low-molecular substances, which target tumor cells with higher specificity, has recently been used in treatment. The two main causes of death in cancer patients are the formation of metastases and the development of multidrug resistance (MDR). This may also be caused by overexpression of the efflux transporters. ATP-binding cassette (ABC) transporters are groups of transmembrane pumps that use energy in the form of ATP to transfer a wide range of substrates. In particular, P-glycoprotein (ABCB1), breast cancer-resistance protein (ABCG2) and multidrug resistance-associated protein 1 (ABCC1) are associated with MDR. Inhibition of these transporters increases the amount of cytostatic substrate within the...
Flow-cytometric analysis of inhibitory effect of novel targeted drugs on the activity of ABC drug efflux transporters
Burianová, Gabriela ; Hofman, Jakub (advisor) ; Červený, Lukáš (referee)
Charles University Faculty of Pharmacy in Hradec Kralove Department of Pharmacology & Toxicology Student: Gabriela Burianova Supervisor: RNDr. Jakub Hofman, Ph.D. Title of diploma thesis: Flow-cytometric analysis of inhibitory effect of novel targeted drugs on the activity of ABC drug efflux transporters Cancer is the second leading cause of death. Cancer treatment often combines conventional chemotherapy, radiation therapy and surgery. More recent approach to treatment is the use of targeted cancer therapy with a greater specificity towards cancer cells. Development of resistance is a major obstacle in the success of chemotherapy. Multidrug resistance (MDR) can be acquired through various mechanisms e.g. overexpression of efflux transporters. ATP binding cassette (ABC) transporters represents a large family of transmembrane proteins that use ATP to pump molecules across the membrane. The three main ABC proteins related to MDR are: P-glycoprotein (ABCB1), multidrug resistance-associated protein 1 (ABCC1) and breast cancer resistance protein (ABCG2). Use of ABC transporter inhibitors increases the amount of chemotherapeutical substrates accumulated within the cells. In this study we evaluated interactions of six synthetic small molecule inhibitors (alisertib, ensartinib, entrectinib, talazoparib,...
Flow-cytometric analysis of inhibitory effect of novel targeted drugs on the activity of ABC drug efflux transporters
Burianová, Gabriela ; Hofman, Jakub (advisor) ; Červený, Lukáš (referee)
Charles University Faculty of Pharmacy in Hradec Kralove Department of Pharmacology & Toxicology Student: Gabriela Burianova Supervisor: RNDr. Jakub Hofman, Ph.D. Title of diploma thesis: Flow-cytometric analysis of inhibitory effect of novel targeted drugs on the activity of ABC drug efflux transporters Cancer is the second leading cause of death. Cancer treatment often combines conventional chemotherapy, radiation therapy and surgery. More recent approach to treatment is the use of targeted cancer therapy with a greater specificity towards cancer cells. Development of resistance is a major obstacle in the success of chemotherapy. Multidrug resistance (MDR) can be acquired through various mechanisms e.g. overexpression of efflux transporters. ATP binding cassette (ABC) transporters represents a large family of transmembrane proteins that use ATP to pump molecules across the membrane. The three main ABC proteins related to MDR are: P-glycoprotein (ABCB1), multidrug resistance-associated protein 1 (ABCC1) and breast cancer resistance protein (ABCG2). Use of ABC transporter inhibitors increases the amount of chemotherapeutical substrates accumulated within the cells. In this study we evaluated interactions of six synthetic small molecule inhibitors (alisertib, ensartinib, entrectinib, talazoparib,...
Flow-cytometric analysis of inhibitory effect of novel targeted drugs on the activity of ABC drug efflux transporters
Burianová, Gabriela ; Hofman, Jakub (advisor) ; Červený, Lukáš (referee)
Charles University Faculty of Pharmacy in Hradec Kralove Department of Pharmacology & Toxicology Student: Gabriela Burianova Supervisor: RNDr. Jakub Hofman, Ph.D. Title of diploma thesis: Flow-cytometric analysis of inhibitory effect of novel targeted drugs on the activity of ABC drug efflux transporters Cancer is the second leading cause of death. Cancer treatment often combines conventional chemotherapy, radiation therapy and surgery. More recent approach to treatment is the use of targeted cancer therapy with a greater specificity towards cancer cells. Development of resistance is a major obstacle in the success of chemotherapy. Multidrug resistance (MDR) can be acquired through various mechanisms e.g. overexpression of efflux transporters. ATP binding cassette (ABC) transporters represents a large family of transmembrane proteins that use ATP to pump molecules across the membrane. The three main ABC proteins related to MDR are: P-glycoprotein (ABCB1), multidrug resistance-associated protein 1 (ABCC1) and breast cancer resistance protein (ABCG2). Use of ABC transporter inhibitors increases the amount of chemotherapeutical substrates accumulated within the cells. In this study we evaluated interactions of six synthetic small molecule inhibitors (alisertib, ensartinib, entrectinib, talazoparib,...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.